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Abstract-A combined numerical and experimental study is reported of solid/liquid phase change in porous 
media with natural convection in the melt region. The model is based on volume averaged transport 
equations, while phase change is assumed to occur over a small temperature range. Experiments are 
performed in a vertical, square enclosure using gallium and glass beads as the fluid and the porous matrix, 
respectively. For natural convection, melting and solidification (with initial supercooling), the numerical 
results show reasonable agreement with the temperature and interface position measurements. Natural 
convection in the melt as well as heat conduction in the solid is found to considerably influence the interface 

shape and movement during both the melting and solidification experiments. 

INTRODUCTION 

Sot_m/liquid phase change in saturated porous media 
occurs in a wide variety of systems in nature and 
engineering. Applications include the freezing and 
melting of soils [l], artificial freezing of ground for 
mining and construction purposes [2], thermal energy 
storage [3], freezing of soil around the heat exchanger 
coils of a ground based heat pump [4, 51, food pro- 
cessing, etc. The present study is, however, motivated 
by solidification of multi-component mixtures. Due 
to the extended freezing temperature range of a 
mixture, a mushy zone might exist, consisting of a fine 
meshwork of dendrites growing into the melt region. 
In the past, this mushy zone has been modeled as 
a porous medium [6]. All of the above systems are 
characterized by microscopically complicated struc- 
tures of the solid/liquid interface. In addition, natural 
convection of the fluid occupying the void spaces of 
the solid matrix may strongly influence the heat trans- 

fer and phase-change processes. 
While liquid/gas phase change (i.e. condensation 

and evaporation) in porous media has received con- 
siderable research attention [7, 81, little work has been 
done in the area of melting and solidification of a 
liquid saturated porous medium [S]. Freezing and 
melting of water saturated porous media contained in 
various enclosures has been studied by Weaver and 
Viskanta [l&12]. Their freezing experiments in a ver- 
tical rectangular cavity [12] clearly show the influence 
of natural convection on the solid/liquid interface 
shape and motion. O’Neill and Albert [13] have 
numerically modeled solidification of porous media 
in the presence of natural convection using a finite 
element method. The energy equations for the frozen 
and unfrozen zones have been coupled by an appro- 
priate interface energy balance. Their computed 
results for a vertical square cavity indicate a strong 

interaction between the solid/liquid interface motion 
and natural convection. With the exception of the 
studies by Weaver and Viskanta [lO-121, no exper- 
imental investigations of solid/liquid phase change of 
porous media contained in an enclosure with natural 
convection in the melt region have, apparently, been 
reported in the literature. 

Due to the fundamental nature and practical rele- 
vance of such problems, the objective of the present 
study is to develop a general model for solid/liquid 
phase change in a porous medium with natural con- 
vection in the melt region. In order to account for 
the complicated interfacial structures of the various 
constituents, the model equations are based on volu- 
metric averaging of the microscopic conservation 
equations. Although it may be possible to obtain simi- 
lar model equations directly from macroscopic bal- 
ance considerations, it is believed that a rigorous aver- 
aging process will offer additional insight into the 
assumptions involved [14]. In addition, the volume 
averaged equations employed in the present study are 
of a more general nature than equations which are 
primarily based on empirical relationships (e.g. 
Darcy’s law). For example, the averaged equations 
are valid for any volume fractions of the porous matrix 
and the liquid and solid phases. Hence, the present 
approach offers the advantage that the entire domain 
can be treated as a single region governed by one set 
of conservation equations. In other words, the same 
equations can be used for the melt as for the fully 
solidified regions. Theoretically, the model can also 
be utilized for solidification of multi-component mix- 
tures, where the porous matrix is formed by the solid 
phase of the fluid alone (i.e. dendritic growth). Again, 
the model equations would be valid for the pure liquid 
and solid regions as well as for the porous mushy 
zone. 

In the present study, the averaged conservation 
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NOMENCLATURE 

aspect ratio, H/L 
specific heat [J kg- ’ K - ‘1 
inertia coefficient 
Darcy number, K/L’ 
gravitational acceleration (m s-‘) 
enthalpy [J kg _ ‘1 
latent heat of fusion [J kg- ‘] 
height of enclosure [m] 
thermal conductivity [W rn- ’ K- ‘1 
~rmeab~lity ]m”] 
length of enclosure [m] 
pressure [N m- ‘1 
dimensionless pressure, pL,“/(p,v,cc,) 
Prandtl number, v& 
Rayleigh number, g/$(Tn - Tc)L3/(v& 
Stefan number, c,( 7’n - Tc)/A.h 
time [s] 
temperature [K] 
velocity [m s- ‘1 
dimensionless velocity, uL/ct, 

volume [m ‘1 
horizontal coordinate fm] 
vertical coordinate [ml. 

Greek symbols 

; 

thermal diffusivity, k,/(~c,) [m’s_ ‘1 
coefficient of thermal expansion [K- ‘1 

Y liquid fraction, see equation (1 b) 
6 liquid fraction, see equation (lc) 
& porosity, see equation (la) 

9 dimensionless vertical coordinate, y/L 

0 dimensionless temperature, 

(T- 7’c)I(Tn - Tc) 
K permeability ratio, K&/K 
A thermal conductivity ratio, keff/kl 

p dynamic viscosity [N s mm ‘1 
V kinematic viscosity [m’s_ ‘1 

5 dimensionless horizontal coordinate, x/L 

z dimensionless time, toll/L2 

cf, quantity, see equation (2) 
0. thermal capacitance ratio, jZ/( p,c,). 

Subscripts 
C cold 
eff effective 
f fluid 
H hot 

: 
initial 
liquid 

m fusion 
p porous matrix 
ref reference 
S solid 
c( constituent 
E porosity. 

Superscripts 
* microscopic 

average. 
-I 

equations are applied to phase change of a fluid inside 
a vertical rectangular enclosure filled with a porous 
matrix. The governing equations are solved numeri- 
cally. Some aspects of the model are verified by con- 
ducting a limited number of natural convection, melt- 
ing and solidification experiments in a rectangular test 
cell heated and cooled from the sides. The porous 
matrix used in the experiments consists of spherical 
glass beads. Because of its low melting temperature 
and well established thermophysical properties, gal- 
lium is chosen as the fluid occupying the void spaces 
and undergoing phase change. 

ANALYSIS 

Mathematical formulation 
The complicated interfacial geometry of the porous 

matrix and the solid and liquid phases prohibits a 
solution of the microscopic conservation equations 
for mass, momentum and energy. Therefore, some 
form of a macroscopic description of the transport 
processes must be employed. The present model is 
based on the volumetric averaging technique [14] for 
obtaining the macroscopic conservation equations. In 
this technique, the microscopic equations, valid for 

each phase, are integrated over a small volume 
element, V. As shown in Fig. l(a), such a volume 
element is, in general, composed of the porous matrix 
VP and the fluid V, which, in turn, may be in the solid, 
V,(t), or liquid, V,(t), state. Hence, we can define the 
following volume fractions 

fraction fluid in volume element 

fraction liquid in fluid 

fraction liquid in volume element. 

In the melt region, the fluid is completely in the liquid 
state so that y = 1 and 6 = E. On the other hand, in 
the pure solid region, both y = 6 = 0. Note that E is 
independent of the state of the fluid. As sketched 
in Fig. l(b), the solid/liquid interface may be highly 
irregular due to the presence of the porous matrix. 
This is especially true for large differences in the ther- 
mal conductivities of the porous matrix and the fluid 
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FIG. 1. Illustration of the phase-change process in a porous 
medium : (a) schematic of a control volume used for aver- 
aging; (b) typical liquid fraction profile ; (c) variation of the 

liquid fraction with temperature. 

[15]. Hence, a volume element close to the fusion 
temperature of the fluid, T,,,, may be simultaneously 
occupied by the solid and liquid phases (and the 
porous matrix). In these volume elements, we have 
that 0 < y < 1 and 0 < 6 < E. 

In addition to the various volume fractions, it is 
appropriate to state the definitions of the averaged 
quantities appearing in the following equations. The 
intrinsic average of a quantity 4 is defined as [14] 

where 4:and 4a are local (‘microscopic’) and averaged 
(‘macroscopic’) quantities, respectively, associated 
with constituent c( (i.e. the porous matrix, liquid, or 
solid). In addition, a superficial (‘Darcian’) velocity, 
II, can be defined as 

II = &I, (3) 

where II, is the average (‘pore’) velocity of the liquid. 
The following simplifying assumptions are made to 

obtain the volume averaged conservation equations : 

(1) The flow and heat transfer are two-dimensional 

and laminar. 
(2) The thermophysical properties of the porous 

matrix as well as of the solid and liquid phases are 
homogeneous and isotropic. 

(3) The porous matrix and the fluid (solid or liquid) 
are in local thermal equilibrium (i.e. T, = T, = 
T, = T). 

(4) The porous matrix and the solid are rigid (i.e. 
UP = II, = 0). 

(5) The porous matrix/fluid mixture is incom- 
pressible and the Boussinesq approximation can be 

invoked. 
(6) The thermophysical properties are constant, but 

may de different for the porous matrix (p), liquid (1) 
and solid (s). 

(7) The dispersion fluxes due to velocity fluctuations 
are negligibly small. 

(8) Velocities due to density change upon phase 
change are neglected (i.e. p, = pS = pr). 

The averaging process of the microscopic con- 
servation equations for each constituent is described 
in detail in refs. [14, 16181 and does not need to be 
repeated here. It should be mentioned, however, that 
the mass and energy equations are obtained by com- 
bining the averaged conservation equations for each 
constituent, while momentum conservation needs to 
be considered for the liquid phase only. The averaged 
mass and momentum conservation equations are 

v*u=o (4) 

PI au PI 
~gfs’(U.V)U= -VP++ 

- (g + Al+-P,~lMT- Tr,,). (5) 

The third and fourth terms on the right-hand side of 
equation (5) are empirical expressions [l&18] 
to account for the first (Darcy’s term) and second 
(Forchheimer’s extension) order drag forces, respec- 
tively, between the liquid and the rigid constituents. 
The value of the permeability, K, can be calculated 
from the Kozeny-Carman equation 

where d,,, is the mean ‘particle size’ (e.g. the diameter 
of the beads). The value of the ‘inertia’ coefficient C 
in Forchheimer’s extension has been measured exper- 
imentally by Ward [19]. Although it is now generally 
accepted that C is a function of the microstructure 
of the porous medium [20], Ward found that for a 
large variety of porous media C can be taken as a 
constant equal to approximately 0.55. This value is 
used in all calculations in this paper. The second term 
on the right-hand side of equation (5) accounts for 
the macroscopic viscous shear in the liquid and is 
often called Brinkman’s extension. The value of the 
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Table 1. Summary of experimental test conditions [A = 1 .O, Da = 1.37 x 10 _ ‘, Pr = 0.0208, 
A = 0.2719 (with k, = k,), Q = 0.8604 (in melt), R = 0.8352 (in solid)] 

Exp. Test 

1 Natural convection 51.9 30.5 7.198~10~ - - 
2 Melting 45.0 20.0 8.409 x lo5 0.1241 0.3912 
3 Solidification 40.0 20.0 6.727 x IO’ 0.0993 0.489 

~--. 

effective viscosity in Brinkman’s extension is taken 
equal to the liquid viscosity in the present study [21]. 

According to the local value of the liquid fraction, 
6, the permeability, K, is equal to K(6 = E) in the melt 
region, while it varies between K(6 = E) and K(6 = 0) 
in the volume elements simultaneously occupied by 
the liquid and solid phases. In the pure solid region 
(i.e. 6 = 0), the permeability approaches zero. By 
using the local values of the liquid fraction and per- 
meability in the solution of the momentum equation 
(see Numerical Procedures), the flow is correctly cal- 
culated in all regions of the physical domain. Note 
that with K -+ 0, the velocities automatically approach 
zero in the solid region and equation (5) reduces to a 
hydrostatic pressure dist~bution equation. 

It should be mentioned that for the conditions of 
the present experiments (see Table 1) the second term 
on the left-hand side of equation (5) as well as Brink- 
man’s extension may be small compared to the Darcy 
term [22]. These terms are, however, a direct result of 
the averaging process [ 181. In its present form, equa- 
tion (5) is valid for any liquid fraction. For example, 
equation (5) reduces to the usual ‘Boussinesq’ momen- 
tum equation for a pure fluid in the limit of 6 -+ 1. 
This case would be of interest for modeling of the flow 
in the pure liquid region during dendritic solidification 
of a multi-component mixture. Such generality would 
not be possible if a reduced form of the momentum 
equation (i.e. the simple Darcy law) had been used. 

The averaged energy equation for the porous 
matrix/solid/liquid mixture can be written as [14, 181 

&Wh, + (l-?)/@,)+ Cl-4PrAl 

+ v * (p,h,u) = v * (k&VT) (7) 

where keff and Tare the effective thermal conductivity 
and temperature of the mixture, respectively, while h, 
is the enthalpy of constituent CC For a pure fluid, phase 
change occurs at a fixed temperature, T,. At this 
temperature, the difference between the liquid and 
solid enthalpies is equal to the latent heat of fusion, 
Ah. Since the phases are assumed to be in local thermal 
equilibrium, a volume element simultaneously occu- 
pied by liquid and solid should, theoretically, be at 
the fusion temperature, T,,,. In reality, however, the 
mean temperature, T, of a volume element which con- 
tains mostly liquid (i.e. y is close to unity) may be 
slightly above the fusion temperature, although the 
local temperature at the solid/liquid interface is equal 
to T,,,. Similarly, an almost completely solidified vol- 

ume element may be slightly below the fusion tem- 
perature. It is realized that the above scenario does 
violate the assumption of local thermal equilibrium, 
but it may be a good approximation for the case where 
finite temperature gradients exist within a volume 
element. Hence, in the present study it is assumed that 
liquid and solid may exist simultaneously in a volume 
element if the mean temperature, T, is within a small 
interval, 2AT, around the fusion temperature, T,,,. A 
typical variation of the liquid fraction, y, with the 
mean temperature is shown in Fig, l(c). Note that the 
liquid fraction, y, is assumed to be equal to 0.5 for 
T = T,,,. Hashemi and Sliepcevich [23], who utilized a 
similar approach, have found that the solution of the 
energy equation is insensitive to the assumed variation 
of y with T, if AT is relatively small. In the present 
study, a linear relationship is chosen (see Fig. l(c)). 
The extent of the liquid/solid zone (see Fig. l(b)) 
depends on the gradients in the mean temperature and 
can be controlled by the choice of AT to simulate the 
actual phase-change process closely. 

For a volume element undergoing phase change 
(i.e. for 0 < y < I), a change in the mean enthalpy of 
the fluid is due to a change in the sensible heat of the 
liquid/solid mixture plus the contribution of the latent 
heat. To a good approximation, this can be expressed 
as 

dt?Mi+(l -Y)P& 

= [YP,C, + (1 -Y)P,c,~ dT+p,Ah dy (8) 

where c, is the specific heat of constituent a. Sub- 
stituting equation (8) into equation (7) results, after a 
few steps, in 

where the mean thermal capacitance of the mixture, 
,C, is defined as 

pc = EPF[YC, + (1 -y)c,l+(l-“)pp’p. (10) 

Note that the term in equation (9) containing the 
latent heat is equal to zero in regions where no phase 
change takes place (i.e. 1’ = const.). Equation (9) 
reduces to the correct limits for y -+ 0 or 1 (i.e. the 
melt and solid regions) and can, thus, be utilized 
throughout the domain of interest. 

The (stagnant) effective thermal conductivity 
depends, in general, on the structure of the porous 
medium as well as on the thermal conductivities and 
volume fractions of each constituent. Typically, the 
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Adiabatic 

FIG. 2. Schematic of the sample problem and coordinate 
system. 

thermal conducti~ti~s of the liquid and solid phases 
of a fluid are not too different so that the mean thermal 
conductivity of the liquid/solid mixture may be 
approximated by 

k, = yk, + (1 - y)k,. (11) 

On the other hand, the thermal conductivity of the 
porous matrix used in the present study (i.e. spherical 
glass beads) is much lower than that of the fluid (i.e. 
gallium). Veinberg [24] proposed a non-linear equa- 
tion which he claimed to be universally applicable 
for a medium with randomly distributed spherical 
inclusions 

ke,+& 
[ 1 
$$ k;k3 -k, = 0. (12) 

From a comparison of the predicted and measured 
temperature distributions (see below), it was found 
that the use of the Veinberg model gave good agree- 
ment for the present system. 

Equations (4), (5) and (9) express the conservation 
of mass, momentum and energy, respectively, for 
solid/liquid phase change in a porous medium with 
natural convection in the melt region. Because of the 
complicated interfacial structures of the constituents, 
the model was based on volume averaged equations 
describing the ‘macroscopic’ transport processes. 
Phase change was assumed to occur over a small tem- 
perature range. The equations are valid for the entire 
domain of interest (melt and solid regions), while the 
properties depend on the state of the fluid occupying 
the void spaces of the porous matrix. In order to 
illustrate the utility of the present model, a sample 
problem is now selected and the relevant dimen- 
sionless parameters are identified. 

The physical system considered in the present study 
is shown in Fig. 2. The vertical walls of the enclosure 
are of height H and are held at the temperatures TH 

and Tc. The connecting horizontal walls of length 
L are considered adiabatic. The enclosure is filled 
uniformly with a rigid, porous matrix which is satu- 
rated with a fluid. Initially, the system is at a uniform 
temperature, T,, equal to TH (for solidification) or T, 
(for melting). The hot wall temperature, T,, is above 
the fusion temperature, T,,,, while Tc is below T,,,. For 
T, equal to T&T,), the fluid is initially in the liquid 
(solid) state and at time t > 0, the solidification (melt- 
ing) process is initiated by imposing the cold (hot) 
temperature, T,-( TH), on one of the vertical sidewalls. 

The dimensionless parameters governing this sys- 
tem can be obtained by introducing dimensionless 
variables (see Nomenclature) into the model equa- 
tions. The resulting dimensionless mass, momentum 
and energy equations, respectively, are 

v-u=0 (13) 

; [ ;~+;(u.v)u 
1 
= -vp+;v2u 

- _Ik+_ c Da f, slUl)U+Ra% (14) 

^/ 
C2~+UW=V.(AvIQ-&$ (15) 

In addition, the relationship describing 6 (or y) as a 
function of temperature (see Fig. l(c)) is given in 
dimensionless form by 

for 

for i3<8,-AtL 

(16) 

The boundary and initial conditions for the present 
system are 

@=l, U=O at {=O, O<q<A 

Q=O, U=O at t=l, O<:?GA (17) 

ae 

e = 0 for melting 

1 for solidification 
for z < 0. 

From equations (13) to (17) it can be seen that the 
system behavior is governed by six dimensionless par- 
ameters, i.e. 

Ra = siWn - T&L3 
W 

Rayleigh number 

Pr = 2 

&R(E> 
L2 

Prandtl number 

Darcy number 
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Ste = 
COH- 5) 

Ah 
Stefan number 

aspect ratio 

Tm--Tc 
8, = ___ 

T,-T, 
fusion temperature. 

Note that all dimensionless parameters and variables 
are based on the liquid properties. The property ratios 
tc, Q, and A are functions of the liquid fraction 6 and, 
therefore, constant in the melt and solid regions but 
variable in the region where phase change takes place. 
The inertia coefficient, C( = 0.55), as well as A@ are 
constant and independent of the specific physical situ- 
ation A value of AB = 0.02 is utilized in all cal- 
culations of the present study. 

Numerical procedures 
The dimensionless conservation equations, equa- 

tions (13 j( 15), were solved numerically utilizing the 
iterative SIMPLER algorithm [25]. This algorithm is 
based on a fully-implicit discretization scheme for the 
unsteady terms, while the power-law scheme is used 
to approximate the combined convective and diffusive 
fluxes. The harmonic mean formulation is adopted 
for the di~usion coefficients which ensures physically 
realistic results for abrupt changes in these 
coefIlcients, for example, in the phase-change region, 
without requiring an excessively fine grid. The last 
three terms on the right-hand side of equation (14) as 
well as the latent heat term in equation (15) represent 
source terms and are treated according to the pro- 
cedure outlined in ref. 1251. The governing equations 
are solved throughout the physical domain, including 
the pure solid region, As discussed previously, the 
velocities automatically approach zero in the limit of 
6 -+ 0 (i.e. pure solid). Since the numerical solution of 
the momentum equation in the pure solid region is 
trivial, this method is somewhat wasteful of computer 
time and storage. The convenience of using a fixed 
and regular grid for the arbitrary geometry of the 
solid and liquid regions offers, however, a significant 
advantage. 

In the compa~sons with the experiments (see 
below), a uniform grid of 26 x 26 nodal points and a 
dimensionless time step of z = 6 x 10el were utilized. 
Preliminary calculations performed on a grid of 
50 x 50 nodal points did not result in significant 
improvements in the accuracy of the results obtained 
for pure natural convection. This is mainly due to the 
relatively small values of the Rayleigh (Ru) and Darcy 
(Da) numbers in the present experiments. It is realized, 
however, that the 26 x 26 grid might not be sufficient 
to accurately resolve the flow structure and solid/ 
liquid interface shape during the simulations of the 
phase-change experiments. The selected mesh size 
(and time step) should only be viewed as a compro- 
mise between accuracy and computational cost. For 

each time step, the iterations were terminated when 
the dependent variables agreed to four significant 
digits at each nodal point and the residual source 
of mass was less than 10 5. The calculations were 
performed on a CYBER 205 computer and required 
up to 5000 CPU seconds for a full simulation of a 
phase-change experiment. Additional tests of the accu- 
racy of the numerical algorithm were performed for 
the limiting cases of no phase change and fully fluid 
(i.e. 6 + 1) and fully porous enclosures [26] and good 
agreement with results reported in the literature was 
found. 

EXPERIMENTS 

Experiments were performed in a well insulated test 
cell of square cross-section. The test cell had inside 
dimensions of 4.76 cm in height and width and 3.81 
cm in depth. The horizontal top and bottom walls 
were constructed of phenolic plates, while the vertical 
front and back walls were made of Plexiglass. The two 
vertical sidewalls, which served as the heat source/ 
sink, were multipass heat exchangers machined out 
of a copper plate. The heat exchangers were connected 
through a valve system to two constant temperature 
baths (Haake A82). Through an appropriate valve 
setting the vertical sidewalls could be maintained at 
either the same (for z < 0) or different (for z > 0) 
temperatures. For the conditions of the present study, 
the time for a heat exchanger to reach the desired 
temperature after a valve switch was usually less than 
20 s. The temperatures of each copper heat exchanger 
were measured with three thermocouples epoxied sep- 
arately into small-diameter holes which were drilled 
close to the surface of the copper plate facing the 
fluid. In all experiments, the temperatures of the heat 
exchangers were uniform to within 3% of the total 
temperature difference across the test cell. 

Measurement of the temperature distribution inside 
the test cell was made with 33 the~ocouples with a 
wire diameter of 0. I27 mm. They were placed in three 
different rakes which were located at heights of 0.635, 
2.38, and 4.125 cm measured from the bottom of 
the test cell. The rakes were positioned such that the 
temperatures were measured along the vertical 
centerplane of the test cell. All the~ocouples were 
calibrated with an accuracy of +O.l”C. The thermo- 
couples were connected to a HP-85 data-logger and 
computer through which the temperatures could be 
measured and stored at preselected time intervals. 

The porous matrix consisted of a random packing 
of spherical glass beads with a diameter of 6.0 mm. 
The the~ophysical properties were obtained by 
knowing the chemical composition of the beads 1271. 
The porosity (E) of the porous matrix was measured 
for the present combination of glass beads and test 
cell and found to be equal to F. = 0.385. The fluid used 
was 99.99% pure gallium with a fusion temperature 
of T, = 29.78”C 1281. The thermophysical properties 
of solid and liquid gallium were taken from the litera- 



Natural convection solid/liquid phase change in porous media 41 

ture [28]. It should be mentioned that an attempt 
to use 2.89 mm glass beads failed because it proved 
impossible to wet the small beads with gallium. This 
can be explained by the high surface tension between 
glass and gallium. 

A number of different experiments have been per- 
formed, but only three were selected for the com- 
parison with the model predictions. The experimental 
conditions together with the values of the dimen- 
sionless parameters are summarized in Table 1. All 
properties were evaluated at a temperature of 
(Tn + TJ2. Experiment 1 was a pure natural con- 
vection experiment, while experiments 2 and 3 
involved also melting and solidification, respectively. 
The solid/liquid interface positions in the phase- 
change experiments were determined by interpolating 
the fusion temperature from the thermocouple read- 
ings. Since the horizontal distance between two ther- 
mocouple junctions was 4.76 mm, the error in the 
calculated interface location was estimated to be less 
than 1 mm. Because of the presence of the glass beads 
(with a diameter of 6.0 mm), the solid/liquid interface 
is expected to be highly irregular making an accurate 
measurement of the progress of the phase-change pro- 
cess difficult. It is believed, however, that the present 
measurements provide good estimates of the average 
interface locations. The accuracy of this method was 
also tested by performing corresponding phase- 
change experiments without the porous matrix (i.e. 
with pure gallium). A dip-stick connected to an x-y 
measurement system was used to infer the solid/liquid 
interface positions and good agreement with values 
calculated from simultaneous temperature measure- 
ments was found. 

Finally, it should be mentioned that in the sol- 
idification experiment, considerable problems were 
encountered with supercooling of the liquid gallium. 
Although the temperature of the cold wall in experi- 
ment 3 was almost 10°C below the fusion temperature 
(for r > 0), no solidification occurred for approxi- 
mately the first 5 min (7 z 1.83). Then, solidification 
started abruptly which could easily be inferred from 
the temperature measurements. Because of their high 
surface tension, supercooling of the melt is par- 
ticularly serious with liquid metals [29]. Even slight 
agitation of the system with a hammer did not initiate 
solidification. The implications of the supercooling 
are discussed in the following section. In the melting 
experiment, no superheating of the solid was 
observed. 

RESULTS AND DISCUSSION 

Natural convection 
The results for experiment 1 are shown in Fig. 3. 

Both, the measured and predicted temperature pro- 
files indicate relatively weak natural convection. This 
is expected because of the small value of the Darcy 
number (relative to the Rayleigh number) and the 
high effective thermal conductivity of the gallium/ 

0.6 
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FIG. 3. Measured and predicted temperature profiles for 
experiment 1. 

glass bead mixture, both of which tend to sup- 
press natural convection flow. Preliminary experi- 
ments with gallium and aluminum beads (not pre- 
sented here) showed that an even higher effective ther- 
mal conductivity results in completely linear 
temperature profiles and, thus, heat transfer by pure 
conduction. 

In general, the agreement between the measured 
and predicted temperatures is better than 5% of the 
total temperature difference across the test cell. Some 
of the discrepancies are possibly due to non- 
uniformities in the porosity, especially in the vicinity 
of the walls. The measured temperatures near the hot 
and cold walls indicate some channeling of the flow 

which is to be expected when using spherical beads as 
the porous matrix. In addition, some experimental 
error might be due to the nonuniformities in the hot 
and cold wall temperatures (< 3%) and imperfect 
adiabatic boundary conditions at the top and bottom 
walls. A possible error in the predicted results might 
be due to the uncertainties in the calculated effective 
thermal conductivity and the permeability of the 
porous medium. In fact, it may be inferred from the 
temperature profile at r] = 0.5 that in the experiment, 
natural convection is slightly stronger than indicated 
by the predictions, suggesting that the calculated 
effective thermal conductivity may be too high or the 
calculated permeability too low. In view of the above 
uncertainties in the measurements and predictions, 
the agreement between the results can be considered 
very good. Although the above comparison of the 
temperature data does not validate the entire model, 
some confidence in the numerical solution procedures 
was established. Due to the strong coupling of the 
heat transfer and fluid flow in the present natural 
convection system, it may be inferred that the pre- 
dicted streamlines closely match the flow patterns in 
the experiment. 
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FIG. 4. Measured and predicted interface positions for 
experiment 2. 

The measured and predicted results for experiment 
2 are shown in Figs. 4-6. Figure 4 illustrates the time 
evolution of the melting front. Measurements of the 
solid/liquid interface position (symbols) were 
obtained at three different heights. The solid lines 
represent the numerical predictions of the isotherm 
6 = B,, where the liquid fraction, y, is equal to 0.5. In 
the simulations, the extent of the phase-change region 
(0 < y < 1) was of the same order of magnitude as the 
diameter of the glass beads. From Fig. 4, it can be 
seen that for the initial 5 min, the melting front is 
almost parallel to the hot wall indicating a conduction 
dominated melting process. This is also confirmed by 
the measured and predicted temperature profiles and 
the predicted streamlines shown in Figs. 5(a) and (b), 
respectively, for z = 1.829 (i.e. t = 5 min). Note that 
the temperature profiles at z = 1.829 (Fig. S(a)) are 
not linear but show a variation characteristic of a 
transient evolution of a temperature field [30]. 

After this initial period, the melt front gradually 
exhibits a shape typical for convection dominated 
melting [30, 311. The interface moves faster near the 
top where the liquid, heated by the hot wall, impinges. 
The melting rate decreases toward the bottom, since 
the liquid cools down as it descends along the inter- 
face. As expected, the interface always intersects the 
adiabatic top and bottom boundaries at right angles 
[31]. With increasing time, the temperature gradients 
in the solid phase increase, causing the melting process 
to slow down. This behavior was also observed in 
melting ex~~ments without a porous matrix ]30]. In 
addition, the curvature of the interface is less than 
what is encountered in melting without heat con- 
duction in the solid region [31]. After approximately 
30 min (T = 10.97), the interface reaches a stationary 
position and the heat transfer rates at the hot and 
cold walls become equal. The tem~rature profiles and 
streamlines for z = 7.314 (i.e. t = 20 min) are shown 

0.8 

0.6 

8 

0.4 

0 0.2 0.4 0.6 0.8 

E 

(a) 

(b) 
FIG. 5. Measured and predicted results for experiment 2 at 
r = 1.829 (t = 5 min) : (a) temperature profiles; (b) stream- 

lines (equal increments). 

in Figs. 6(a) and (b), respectively. Natural convection 
in the liquid region is somewhat stronger than at 
earlier times. It may also be seen that the flow in the 
melt region is almost fully developed, while the tem- 
perature profiles in the melt and solid regions are close 
to what one would expect in the steady state. Due to 
the high computational cost, the numerical simulation 
was terminated at r = 7.314. 

The agreement between the measured and predicted 
temperatures and interface positions is, in general, 
good. Most discrepancies can be explained by the 
uncertainties in the measurements and effective prop- 
erties mentioned previously. In particular, the mea- 
sured interface Iocations in the early phase of the 
experiment indicate less melting than the numerical 
predictions. This is due to the finite time (about 20 s) 
needed for the hot heat exchanger to reach the desired 
temperature. As a consequence, melting starts later 
and proceeds at a lower rate. In addition, there were 



0.6 

0 

0.4 

Natural convection solid/liquid phase change in porous media 43 

7) Exp. Analysis 

0.1333 0 - 
0.5000 A ---- 

0 0.2 0.4 0.6 0.0 1.0 

E 
(4 

FIG. 6. Measured and predicted results for experiment 2 at 
5 = 7.3 14 (t = 20 min) : (a) temperature profiles ; (b) stream- 

lines (equal increments). 

nonuniformities in the hot heat exchanger tem- 
perature during this initial period (about l”C), which 
explains the curvature in the measured interface at 
7 = 0.366 (t = 1 min). At 7 = 0.732 (t = 2 min), the 
measured interface is, as predicted, almost parallel to 
the hot exchanger, indicating that at later times, the 
wall temperature is relatively uniform. Since the melt- 
ing rate decreases with increasing time, the agreement 
between measured and predicted interface improves 
gradually. At 7 = 7.314 (t = 20 min), the predicted 
melting front shape and location matches closely the 
experimental measurements. 

The above comparisons show that the present 
model of the phase-change process is well suited for 
simulating melting in a porous medium. The finite 
phase-change zone incorporated in the model seems 
to be a good approximation of the highly irregular 
solid/liquid interface. Preliminary calculations per- 
formed with A@ = 0.01 and 0.04 (not presented here) 
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FIG. 7. Measured and predicted temperature profiles for 
experiment 3 at 5 = 1.829 (t = 5 min). 

showed that the predicted temperatures (and, hence, 
the interface positions) as well as the streamlines are 
not very sensitive to such variations in A@. The good 
agreement between the measured and predicted tem- 
peratures suggests that the present choice of 
A@(= 0.02) adequately reflects the actual extent of 
the irregularities in the solid/liquid interface shape in 
experiment 2. It should be noted, however, that an 
unrealistically large AB (i.e. >O.l) would introduce 
too much artificial ‘smearing’ of the predicted inter- 
face. On the other hand, if the interface is expected to 
be smoother, such as in melting of a pure fluid 

(without a porous matrix), one could decrease the 
extent of the liquid/solid zone by choosing a very 
small A@. 

Solidlfkation 
The results for the solidification experiment 3 are 

shown in Figs. 7-10. As mentioned previously, the 
liquid gallium did not solidify for the first 5 min, 
although the cold wall temperature was below the 
fusion temperature. Figure 7 shows the temperature 
profiles at 7 = 1.83 (t = 5 min). The temperature pro- 
files are very similar to the ones of experiment 1, 
indicating that (almost) fully-developed natural con- 
vection takes place in the entire enclosure. The 
numerical simulation of experiment 3 was obtained 
by setting the fusion temperature to a very low value 
(0, < 0) for the first 5 min. Then, at 7 = 1.83 (t = 5 
min), the fusion temperature was changed back to its 
actual value and hence, solidification started at the 
cold wall. It is realized that this procedure does not 
model the actual mechanisms of supercooling, but it is 
hoped that a meaningful simulation of the experiment 
can be obtained in this way. 

A comparison of the measured and predicted inter- 
face position is shown in Fig. 8. At z = 2.194 (I = 6 
min), only 1 min after solidification started, more than 
20% of the enclosure is solidified. The corresponding 
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FIG. 8. Measured and predicted interface positions for 
experiment 3 
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Fro. 9. Measured and predicted results for experiment 3 at 
r = 2.194 (t = 6 min): (a) tem~ratu~ profiles; (b) stream- 

lines (equal increments). 
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FIG. 10. Measured and predicted results for experiment 3 at 
r = 7.3 14 (t = 20 min) : (a) temperature profiles ; (b) stream- 

lines (equal increments). 

temperature profiles and streamlines are shown in 
Figs. 9(a) and (b), respectively. It can be seen that 
there is relatively strong natural convection in the melt 
region, while there exist steep temperature gradients 
in the solidified region. With increasing time, the tem- 
perature gradients in the solid decrease, causing the 
solidification process to slow down. Throughout the 
experiment, the interface shows a curvature typical of 
natural convection dominated solidification, i.e. the 
solidification rate increases from the top to the bottom 
of the enclosure. The interface reaches a stationary 
position at approximately z = 10.97 (E = 30 min). The 
temperature profiles and streamlines for r = 7.314 
(t = 20 min) are shown in Figs. 10(a) and (b), respec- 
tively. Again, the simulation was terminated at this 
time. Due to the smaller extent of the melt region, 
natural convection is somewhat weaker than at earlier 
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times. The temperature profiles indicate that the the interface shape and motion during both the melt- 

steady state is almost reached. ing and solidification experiments. 

A comparison of the predicted and measured tem- 
peratures and interface positions suggests that the 
present procedure of treating the initial supercooling 
yields reasonable agreement with the experiment. For 
T = 2.194 (t = 6 min), there is, however, a relatively 
large discrepancy between the measured and predicted 
interface position at q = 0.133 (see Fig. 8). This can 
be explained by the fact that the temperature gradients 
in this region are very small, while the temperatures 
are very close to the fusion temperature (see Fig. 9(a)). 
This results in a large phase-change zone (i.e. where 
0 < y < 1) in the simulation and also produces a large 
uncertainty in the measured interface location. Actu- 
ally, the measured interface location at 7 = 2.194 cor- 
responds to a liquid fraction y of about 0.8 in the 
predictions, which is well inside the phase-change 
zone. Theoretically, this problem could be overcome 
by choosing a smaller AB. A preliminary attempt to 
decrease A0 resulted, however, in convergence diffi- 
culties, which can be attributed to the large transients 
present during this time period. As in the melting 
experiment, the agreement between the measured and 
predicted interface positions becomes better as the 
steady state is approached. In general, the previous 
discussions of the uncertainties in the measurements 
and predictions apply to this experiment. 

Obviously, additional experiments using different 
test cells and fluid/porous matrix combinations are 
needed to fully understand the complicated processes 
during solid/liquid phase change in porous media. Ex- 
periments involving dendritic solidification of multi- 
component mixtures would be of interest to validate 
the present model for the case where a pure liquid 
region (i.e. E = y = 6 = 1) exists in addition to the 
porous mushy zone and the solid. Finally, modeling 
of porosity and property variations as well as of the 
effective properties need more research attention. 
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CONVECTION NATURELLE AVEC CHANGEMENT DE PHASE SOLIDE/LIQUIDE 
DANS LES MILIEUX POREUX 

R&sum&Une &de ii la fois numerique et expCrimentale traite du changement de phase solidejliquide 
dans les milieux poreux, avec convection naturelle dans la rkgion fondue. Le modtle est bask sur les 
kquations de transport moyennees en volume, tandis yue le changement de phase est suppos$ se produire 
dans un petit intervalle de temperature. Des exptriences sont faites dans une enceinte car&e, verticale, 
utilisant des lits de gallium et de verre respectivement comme fluide et matrice poreuse. Pour la convection 
naturelle, la fusion et la solidification (avec sous-refroidissement initial). les r&sultats numkriques montrent 
un accord raisonnable avec les mesures de tempkrature et de position de I’interface. La convection naturelle 
dans le bain et la conduction thermique dans le solide est trouvCe influencer consid&ablement la forme de 

l’interface et son mouvement pendant les exptriences de fusion aussi bien que de solidification. 

FEST/FLUSSIG-PHASENWECHSEL BE1 NATURLICHER KONVEKTION 
IN PORijSEN MEDIEN 

Zusammeufassung-Es wird iiber eine kombinierte numerische und experimentelle Untersuchung des 
Fest~Fl~ssig-Phasenwechsels in porBsen Medien bei nat~rlicher Konvektion in der Schmelzzone berichtet. 
Das Model1 beruht auf volumen-~emittelten Transpo~gleich~gen, wobei angenommen wird, dal3 der 
Phasenwechsel innerhalb eines kleinen Temperaturbereiches stattfindet. In einem vertikalen quadratischen 
Behllter werden Versuche durchgefiihrt, als Fliissigkeit und poriise Matrix werden Gallium bzw. Glasperlen 
verwendet. Die numerischen Ergebnisse zeigen fiir natijrliche Konvektion, den Schmelzvorgang und die 
Erstarrung (mit innerer Unterkiihlung) beachtliche ijbereinstimmung mit Messungen der Temperatur und 
der Lage der Phasengrenze. Es wurde herausgefunden, da13 sowohl natiirlichc Konvektion in der Schmelze 
als such ~~rnleleitung in der festen Phase die Form und die Verschiebung der Phasengrenze bei Schmelz- 

und Erstarrungsversu~hen ~tr~chtlich beeinflussen. 

I-IEPEXOA M3 TBEPAOI”0 B mr?AKOE COCTOIIHME I-IPM. ECTECTBEHHOR 
KOHBEKL&IM B I-IOPMICTbIX CPEJ$4X 

A~oTa~-~uc~eHHo a 3Kc~ep~MeHT~bHo H~~exo~H +a3OSbIii nepexon 83 XIepaoro coc~oxmi~i B 
xcnmoe B nopucrblx cpenax npzi nza6nemisi w ecrecraemiol KoHBexumi. Monenb ocHoBaHa na ypaese- 
~m.x ocpeAHenHor0 no 06z.e~y npouecca nepeHoca a npennonomemni, wo +a3oeb& nepexon npoecxo- 
nel B He6OJIbmOM naana3oee U3MeHemin rehtnepaTyp. 3KcnepaMeHTbr BbmonHeHbI a aepruranbeofi 
KsanpaTHoii nonocTn, B ~o~opok rann~ii w ~ewnnnible mapaxB ucnonb30aaJmcb B KaqecTae xcBnKoc~B 
A nopHcToii MaTpeubl. ZIacneHHbre pesynbraTb1 Ann ecrecTaeHHoiI KoHB~KWM, nnaanemin 5i 3aTsepne- 
Batnix (npH HaJwiw nepaoHaSanbnor0 nepeoxnamneeun) xopomo cornacywrcp c AaHHbwH a3MepeHeE 
rebfnepaTypbI II nonoXemiil noaepxwcw pa3nena. HakeHo, 9To ecTeeraeiitias voHseKmir a pacnnaae, 
a -raKXe Ten~onpoaoAH~b ~aepnoii +a3bl c~~Taen~0 BJIUIIIOT Ha QtopMy B nonoXeHne noaepxfiocrzi 

pasitenanpennaBneHHas3afaepnesanna. 


